Abstract

Although acid rain control is inherently multiobjective, previous optimization approaches have generally been single-objective, often acting to minimize aggregate abatement cost or emission reductions. Using an updated, least-cost deposition-constrained deterministic model as a basic framework, three multiobjective models are developed that consist of formulations which permit deviations about target deposition levels, the addition of constraints to effect measures of equity and models to enforce restrictions on aggregate emission reduction tonnage. The deposition deviation model shows that large abatement cost savings can be realized if the hard upper bound on maximum allowable deposition limit is preferentially relaxed. The socalled equity model develops strategies that attempt to balance within each state and province, the disparity between fractional emission and fractional deposition reductions. The aggregate emission reduction model shows some of the effects associated with the imposition of a common type of acid rain proposal. Our intent is to demonstrate that the incorporation of multiobjectivity into mathematical programming models for optimizing acid rain control constitutes an important step toward the identification of more representative, more useful and hopefully, scientifically and politically acceptable abatement strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.