Abstract

A data warehouse system uses materialized views extensively in order to speedily tackle analytical queries. Considering that all possible views cannot be materialized due to maintenance cost and storage constraints, the selection of an appropriate set of views to materialize that achieve an optimal trade-off among query response time, maintenance cost, and the storage constraint becomes an essential necessity. The selection of such an appropriate set of views for materialization is referred to as the materialized views selection problem, which is an NP-Complete problem. In the last two decades, several new selection approaches, based on heuristics, have been proposed. Most of these have used a single objective or weighted sum approach to address the various constraints. In this article, an attempt has been made to address the bi-objective materialized view selection problem, where the objective is to minimize the view evaluation cost of materialized views and the view evaluation cost of the non-materialized views, using the Improved Strength Pareto Evolutionary Algorithm. The experimental results show that the proposed multi-objective view selection algorithm is able to select the Top-K views that achieves a reasonable trade-off between the two objectives. Materializing these selected views would reduce the query response times for analytical queries and thereby facilitates the decision-making process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.