Abstract
In this paper, we propose a multi-objective imperialistic competitive algorithm (MOICA) for solving global multi-objective optimization problems. The MOICA is a modified and improved multi-objective version of the single-objective imperialistic competitive algorithm previously proposed by Atashpaz-Gargari and Lucas (IEEE Congr Evolut Comput 7:4661–4666. doi: 10.1109/CEC.2007.4425083 , 2007). The presented algorithm utilizes the metaphor of imperialism to solve optimization problems. Accordingly, the individuals in a population are referred to as countries, of which there are two types—colonies and imperialists. The MOICA incorporates competition between empires and their colonies for the solution of multi-objective problems. To this end, it employs several non-dominated solution sets, whereby each set is referred to as a local non-dominated solution (LNDS) set. All imperialists in an empire are considered non-dominated solutions, whereas all colonies are considered dominated solutions. In addition to LNDS sets, there is one global non-dominated solution (GNDS) set, which is created from the LNDS sets of all empires. There are two primary operators in the proposed algorithm, i.e., assimilation and revolution, which use the GNDS and LNDS sets, respectively. The significance of this study lies in a notable feature of the proposed algorithm, which is that no special parameter is used for diversity preservation. This enables the algorithm to prevent extra computation to maintain the spread of solutions. Simulations and experimental results on multi-objective benchmark problems show that the MOICA is more efficient compared to a few existing major multi-objective optimization algorithms because it produces better results for several test problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.