Abstract
When dealing with computationally expensive simulation codes or process measurement data, surrogate modeling methods are firmly established as facilitators for design space exploration, sensitivity analysis, visualization, prototyping and optimization. Typically the model parameter (=hyperparameter) optimization problem as part of global surrogate modeling is formulated in a single objective way. Models are generated according to a single objective (accuracy). However, this requires an engineer to determine a single accuracy target and measure upfront, which is hard to do if the behavior of the response is unknown. Likewise, the different outputs of a multi-output system are typically modeled separately by independent models. Again, a multiobjective approach would benefit the domain expert by giving information about output correlation and enabling automatic model type selection for each output dynamically. With this paper the authors attempt to increase awareness of the subtleties involved and discuss a number of solutions and applications. In particular, we present a multiobjective framework for global surrogate model generation to help tackle both problems and that is applicable in both the static and sequential design (adaptive sampling) case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.