Abstract

In this paper, we propose a multi-objective genetic algorithm and apply it to flowshop scheduling. The characteristic features of our algorithm are its selection procedure and elite preserve strategy. The selection procedure in our multi-objective genetic algorithm selects individuals for a crossover operation based on a weighted sum of multiple objective functions with variable weights. The elite preserve strategy in our algorithm uses multiple elite solutions instead of a single elite solution. That is, a certain number of individuals are selected from a tentative set of Pareto optimal solutions and inherited to the next generation as elite individuals. In order to show that our approach can handle multi-objective optimization problems with concave Pareto fronts, we apply the proposed genetic algorithm to a two-objective function optimization problem with a concave Pareto front. Last, the performance of our multi-objective genetic algorithm is examined by applying it to the flowshop scheduling problem with two objectives: to minimize the makespan and to minimize the total tardiness. We also apply our algorithm to the flowshop scheduling problem with three objectives: to minimize the makespan, to minimize the total tardiness, and to minimize the total flowtime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.