Abstract
Design problems in industrial engineering often involve a large number of design variables with multiple objectives, under complex nonlinear constraints. The algorithms for multiobjective problems can be significantly different from the methods for single objective optimization. To find the Pareto front and non-dominated set for a nonlinear multiobjective optimization problem may require significant computing effort, even for seemingly simple problems. Metaheuristic algorithms start to show their advantages in dealing with multiobjective optimization. In this paper, we extend the recently developed firefly algorithm to solve multiobjective optimization problems. We validate the proposed approach using a selected subset of test functions and then apply it to solve design optimization benchmarks. We will discuss our results and provide topics for further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.