Abstract

In this paper, a Pareto-basedmulti-objective optimization algorithmusing Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for expansion planning of electrical distribution networks. The two conflicting objectives are: installation and operational cost, and fault/failure cost. A novel cost-biased particle encoding/decoding scheme, along with heuristics-based conductor size selection, for CLPSO is proposed to obtain optimum network topology. Simultaneous optimization of network topology, reserve-branch installation and conductor sizes are the key features of the proposed algorithm. A set of non-dominated solutions, capable of providing the utility with enough design choices, can be obtained by this planning algorithm. Results on a practical power system are presented along with statistical hypothesis tests to validate the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.