Abstract

Several methods have been proposed to automatically generate fuzzy rule-based systems (FRBSs) from data. At the beginning, the unique objective of these methods was to maximize the accuracy with the result of often neglecting the most distinctive feature of the FRBSs, namely their interpretability. Thus, in the last years, the automatic generation of FRBSs from data has been handled as a multiobjective optimization problem, with accuracy and interpretability as objectives. Multi-objective evolutionary algorithms (MOEAs) have been so often used in this context that the FRBSs generated by exploiting MOEAs have been denoted as multi-objective evolutionary fuzzy systems. In this paper, we introduce a taxonomy of the different approaches which have been proposed in this framework. For each node of the taxonomy, we describe the relevant works pointing out the most interesting features. Finally, we highlight current trends and future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.