Abstract

The present study proposes a simple grey-box identification approach to model a real DC-DC buck converter operating in continuous conduction mode. The problem associated with the information void in the observed dynamical data, which is often obtained over a relatively narrow input range, is alleviated by exploiting the known static behavior of buck converter as a priori knowledge. A simple method is developed based on the concept of term clusters to determine the static response of the candidate models. The error in the static behavior is then directly embedded into the multi-objective framework for structure selection. In essence, the proposed approach casts grey-box identification problem into a multi-objective framework to balance bias-variance dilemma of model building while explicitly integrating a priori knowledge into the structure selection process. The results of the investigation, considering the case of practical buck converter, demonstrate that it is possible to identify parsimonious models which can capture both the dynamic and static behavior of the system over a wide input range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.