Abstract

Traffic grooming in optical networks is the process of multiplexing and demultiplexing low-speed traffic streams onto high-speed wavelengths. The research in the domain of traffic grooming mainly focuses on minimizing number of SONET add/drop multiplexers (SADMs) in SONET/WDM rings and it has been shown that they can potentially be reduced by careful assignment of low-speed traffic streams onto high-speed wavelengths. However, the cost of the network not only depends on the number of SADMs, but also the number of wavelengths and the grooming ratio. It is often the case that all of them cannot be minimized simultaneously. In this article, the problem of minimization of cost of a SONET/WDM unidirectional ring has been modeled as a multiobjective optimization problem which simultaneously minimizes the number of SADMs, the number of wavelengths, and the grooming ratio. A popular multiobjective genetic algorithm (NSGA-II) has been used as the underlying optimization tool. The resultant set of near-Pareto-optimal solutions contains a number of nondominated solutions, which the user can judge relatively and pick up the most promising one according to the problem requirements. Performance of the proposed algorithm has been demonstrated on different network topologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call