Abstract

Due to the growing demand of cloud services, allocation of energy efficient resources (CPU, memory, storage, etc.) and resources utilization are the major challenging issues of a large cloud data center. In this paper, we propose an Euclidean distance based multi-objective resources allocation in the form of virtual machines (VMs) and designed the VM migration policy at the data center. Further the allocation of VMs to Physical Machines (PMs) is carried out by our proposed hybrid approach of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) referred to as HGAPSO. The proposed HGAPSO based resources allocation and VMs migration not only saves the energy consumption and minimizes the wastage of resources but also avoids SLA violation at the cloud data center. To check the performance of the proposed HGAPSO algorithm and VMs migration technique in the form of energy consumption, resources utilization and SLA violation, we performed the extended amount of experiment in both heterogeneous and homogeneous data center environments. To check the performance of proposed HGAPSO with VM migration, we compared our proposed work with branch-and-bound based exact algorithm. The experimental results show the superiority of HGAPSO and VMs migration technique over exact algorithm in terms of energy efficiency, optimal resources utilization, and SLA violation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.