Abstract

Each mutation operator of differential evolution (DE) algorithm is generally suitable for certain specific types of multi-objective optimization problems (MOPs) or particular stages of the evolution. To automatically select an appropriate mutation operator for solving MOPs in different phases of the evolution, a multi-objective differential evolution with performance-metric-based self-adaptive mutation operator (MODE-PMSMO) is proposed in this study. In MODE-PMSMO, a modified inverted generational distance (IGD) is utilized to evaluate the performance of each mutation operator and guide the evolution of mutation operators. The proposed MODE-PMSMO is then compared with seven multi-objective evolutionary algorithms (MOEAs) on five bi-objective and five tri-objective optimization problems. Generally, MODE-PMSMO exhibits the best average performance among all compared algorithms on ten MOPs. Additionally, MODE-PMSMO is employed to solve four typical multi-objective dynamic optimization problems in chemical and biochemical processes. Experimental results indicate that MODE-PMSMO is suitable for solving these actual problems and can provide a set of nondominated solutions for references of decision makers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.