Abstract

Graphite-based nanomaterials (GNs) are promising conductive fillers for producing highly effective electrically conductive cementitious composites (ECCC) and promoting non-destructive structural health monitoring (SHM) methods. Since acceptable mechanical strength and electrical resistivity are both required, the design of GN-reinforced cementitious composites (GNRCC) is a complicated multi-objective optimization problem (MOOP). The present study proposes a comprehensive data-driven method to address this multi-objective design optimization (MODO) issue for GNRCC using machine learning (ML) techniques and non-dominated sorting genetic algorithm (NSGA-Ⅱ). First, prediction models of uniaxial compressive strength (UCS) and electrical resistivity (ER) of GNRCC are established by Bayesian-tuned XGBoost with prepared experimental datasets. The results show that they have excellent performance in predicting both properties with high R2 (0.95 and 0.92, 0.99 and 0.98) and low mean absolute error (MAE) scores (1.24 and 3.44, 0.15 and 0.22). The influence of critical features on GNRCC’s properties are quantified by ML theories. This helps determine the variables to be optimized and define their constraints for the MODO. Finally, the MODO program is developed on the basis of NSGA-Ⅱ. It optimizes GNRCC’s properties of UCS and ER simultaneously with the proposed prediction models as objective functions. It successfully achieves a set of Pareto solutions, which can facilitate appropriate parameters selections for the GNRCC design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.