Abstract

Abstract Optimally designed water distribution networks (WDNs) make engineers’ tasks difficult due to various challenges like non-linearity between head-loss and flow, commercially available distinct diameters, combinatorial, nondeterministic polynomial-time hard problems and a large number of decision variables. This paper develops a new hybrid NSGA-II algorithm augmented with a random multi-point crossover operator and a local search denoted by RLNSGA-II to design the multiobjective WDN. The efficiency of the proposed algorithm (RLNSGA-II) is tested on three benchmark problems, namely New York, Hanoi and Balerma networks. The results obtained are compared with the best-known algorithms available in the literature. The results have shown that the proposed algorithm RLNSGA-II has found better converged and distributed solutions for all three representative benchmark problems considered in the literature consistently and evidently when compared with the best-known approximation of solutions published. Furthermore, as the complexity of the WDN increases, its advantages over other algorithms become more significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call