Abstract

This paper addresses the optimal design of desalination plants that integrate reverse osmosis, a Rankine cycle, parabolic trough solar collectors and thermal energy storage (TES). A multi-objective mixed-integer nonlinear programming model (MINLP) is developed to model such an integrated system and optimize its design and operating conditions according to economic and environmental metrics. The model considers the simultaneous minimization of cost and environmental impact given a specific water demand to be fulfilled. The environmental performance is quantified via life cycle assessment (LCA) principles. Particularly, the CML 2001 methodology, a widely used LCA-based framework, is used to assess the impact, enabling the identification of the main sources of damage across the entire life cycle of the plant. The capabilities of our method are illustrated through its application to a case study considering weather data in Tarragona (Spain). We show that coupling seawater desalination with solar collectors and thermal energy storage leads to significant environmental savings at a marginal increase in cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.