Abstract
The aim of this study was to solve power scheduling issues in smart homes to enable demand response in smart grids. The objective of demand response is to match demand with supply by reflecting supply expectations through consumer price signals, and especially to avoid peak demand during times of high prices and when supply is limited. Three objectives were considered: first, economic rationing by minimizing the total costs for consumers with the given hourly prices; second, to achieve better efficiency in terms of supply and greater stability in a power system by reducing peaks in usage or load, which is defined by minimizing the percentage of power rate; third, related to consumer comfort levels, by reducing variance in the schedule of appliances to actual usage periods requested. This multiobjective power scheduling problem for smart homes (PHPSH) was explored using a nondominated sorting genetic algorithm, called NSGA-II. The results showed that the Pareto-optimal solutions from NSGA-II are compatible with the weighted-sum-based model from the literature, and viable alternatives are available for end users with different weighted objectives.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.