Abstract

AbstractVector‐valued controller cost functions that are solely data‐dependent and reflect multiple objectives of a control system are examined within the framework of unfalsified adaptive control. The notion of Pareto optimality of vector‐valued cost functions and the conditions under which they are cost‐detectable are discussed. A sampled data/discrete‐time Level‐Set controller switching algorithm is investigated which allows for the relaxation of the assumption that the controller cost function be monotonically nondecreasing in time. This opens up the possibility of the use of fading memory cost functions which are nonmonotone. When an active controller is falsified at the current threshold cost level, the Level‐Set switching algorithm replaces it by an effectively unique solution of the weighted Tchebycheff method, thus ensuring the selection of an unfalsified Pareto optimal controller. Theoretical results for convergence and stability of the adaptive system are given. Simulation results validate the use of cost‐detectable multi‐objective cost functions. An example of a cost‐detectable cost function which uses fading memory norm of the fictitious tracking error as a performance measure is shown. This allows for computation of performance of nonactive controllers with respect to a reference model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call