Abstract

Control structure design traditionally involves two steps of selections, namely the selection of controlled and manipulated variables and the selection of pairings interconnecting these variables. The available criteria for both selections require enumeration of every alternative. Hence, an exhaustive search can be computationally forbidding for large-scale processes. On the other hand, owing to the computational complexity, variables and pairings are often selected sequentially, which may result in suboptimal control structures. In this paper, an efficient branch and bound (BAB) method is proposed to select the variables and pairings together in a multiobjective optimization framework. As an illustration of the proposed multiobjective BAB framework, the minimum singular value rule and the μ-interaction measure are used as the criteria for selection of controlled variables and pairings, respectively. Numerical tests using randomly generated matrices and the large-scale case study of hydrodealkylation of t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.