Abstract
A contaminant intentional intrusion into a water distribution system is one of the most difficult threats to address. This is because of the uncertainty of the type of the injected contaminant and its consequences, and the uncertainty of the location and intrusion time. An online contaminant sensor network is the main constituent to enhance the security of a water distribution system against such a threat. In this study a multiobjective model for water distribution system optimal sensor placement using the nondominated sorted genetic algorithm II is developed and demonstrated using two water distribution systems of increasing complexity. Tradeoffs between three objectives are explored: (1) sensor detection likelihood; (2) sensor detection redundancy; and (3) sensor expected detection time. Pareto fronts are plotted for pairs of conflicting objectives, and simultaneously for all three. A contamination event heuristic sampling methodology is developed for overcoming the problem of contamination event sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water Resources Planning and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.