Abstract

Multi-layered spherical nanoparticles are known to be able to achieve large electric field enhancements via highly resonant electrically small geometries. While the resonant properties of these nanoparticles can be tailored by altering their material geometries, their scattered far-fields can subsequently be tailored as well. This is accomplished through a fortuitous superposition of electric and magnetic multipoles that yield the desired far-field patterns. In this study, the tradeoffs between traditional far field quantities, directivity and gain, are analyzed for a representative multi-layer configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call