Abstract

Factory management plays an important role in improving the productivity and quality of service in the production process. In particular, the distributed permutation flow shop scheduling problem with multiple factories is considered a priority factor in the factory automation. This study proposes a novel model of the developed distributed scheduling by supplementing the reentrant characteristic into the model of distributed reentrant permutation flow shop (DRPFS) scheduling. This problem is described as a given set of jobs with a number of reentrant layers is processed in the factories, which compromises a set of machines, with the same properties. The aim of the study is to determine the number of factory needs to be used, jobs assignment to certain factory and sequence of job assigned to the factory in order to simultaneously satisfy three objectives of minimizing makespan, total cost and average tardiness. To do this, a novel multi-objective adaptive large neighborhood search (MOALNS) algorithm is developed for finding the near optimal solutions based on the Pareto front. Various destroy and repair operators are presented to balance between intensification and diversification of searching process. The numerical examples of computational experiments are carried out to validate the proposed model. The analytical results on the performance of proposed algorithm are checked and compared with the existing methods to validate the effectiveness and robustness of the proposed potential algorithm in handling the DRPFS problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call