Abstract

The mechanism(s) mediating atherosclerotic calcification may be similar to those governing bone remodeling, and osteoblast-like cells have been observed in plaque. We tested the hypothesis that osteoclast-like cells (OLCs) also exist in atherosclerotic arteries. In 205 tissue blocks obtained from 21 patients undergoing carotid endarterectomy, we performed histopathologic analysis, histochemical staining for tartrate-resistant acid phosphatase (TRAP), and immunohistochemical analysis for osteoclast and macrophage antigens, including CD68, colony stimulating factor-1 receptor (CSF-1R), cathepsin K (cat-K), receptor activator of nuclear factor-κB (RANK), and osteoprotegerin (OPG). Lesions were classified according to the AHA system, and further grouped as calcified or non-calcified (with necrotic cores or suture granulomas). Multinucleated giant cells morphologically similar to osteoclasts were frequently seen, sometimes exhibited morphologic evidence of polarization, were closely associated with regions of calcification, fibrosis, or granulomatous tissue, and also appeared to be associated with neovascularization and regions of intraplaque hemorrhage. TRAP-positive cells often expressed the osteoclast-associated antigens cat-K, RANK, and OPG. Calcification typically occurred at the base of plaque or in necrotic cores in various morphologies, including a fine powdery pattern, a diffuse pattern of larger deposits near cholesterol clefts and necrotic centers, and nodular forms. Regions of frank ossification were rarely observed. Conclusion: OLCs are frequently found in plaque, and co-localize with sub-regions of cholesterol deposition, mineralization, and necrotic and foreign debris. True bone tissue is rare in carotid plaque, although more common in other arteries. Our findings suggest that arterial OLCs might degrade mineral deposits, prevent formation of calcification or both and therefore counterbalance the activity of the osteoblast-like cells in atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.