Abstract

Abstract A series of ternary rare earth – transition metal – tetrelides RET 2 Tt 2 (RE = Sc, Y, La, Lu; T = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au; Tt = Si, Ge) was synthesized by arc melting of the elements and subsequent annealing. The samples were characterized by powder X-ray diffraction and in addition, the structures of REOs2Si2 (RE = Y, La, Lu), LaAu2Si2, LaAg2Ge2 and LaAu2Ge2 were refined from single crystal X-ray diffractometer data. The tetrelides crystallize with the ThCr2Si2 type (I4/mmm) except the platinum compounds which adopt the klassengleiche superstructure of the CaBe2Ge2 type (P4/nmm). The transition metal atoms have tetrahedral tetrel coordination and the tetrahedra condense to layers via common edges. The stacking of these layers leads to Tt−Tt bonds in the ThCr2Si2 type phases and heteroatomic T−Tt bonds in the CaBe2Ge2 type phases. The rare earth atoms fill larger cages within these three-dimensional networks (coordination number 16 with RE@T 8 Tt 8) with site symmetries 4/mmm (ThCr2Si2 type) and 4mm (CaBe2Ge2 type). Systematic multinuclear solid state NMR spectroscopic investigations allowed observing the effect of the involved rare-earth metal, transition metal and tetrel group element, respectively. In particular, 29Si isotropic resonance shifts can be predicted from element-specific increments and interatomic Si–Si bonding interactions manifest themselves in axially symmetric magnetic shielding anisotropies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.