Abstract

Bimetallic chlorodi-/triorganotin(IV) derivatives of general formulas R2(H2O)SnLCSSSn(Cl)R2 (R=Me: 1; Ph: 2) and R3Sn(Na)LCSSSnR3·H2O (R=Bu: 3; Ph: 4) were prepared by reaction of iminodiacetic acid disodium salt hydrate (Na2LH) with CS2 and R2SnCl2/R3SnCl in methanol. The reaction between Na2LH, CS2, and PdCl2 produced [Na2LCSS]2Pd·2H2O (5) which was treated with R3SnCl to synthesize the heterobimetallic derivatives [R3Sn(Na)LCSS]2Pd·2H2O (R=Me: 6; Ph: 7). The complexes were characterized by microanalysis, spectroscopic, and thermogravimetric analyses. Elemental analysis data, mass fragmentation, and thermal degradation patterns supported the molecular composition of the complexes. FT-IR data indicated monodentate binding of carboxylate while a chelating coordination mode of the dithiocarboxylate was verified in the solid state. A five-coordinate tin(IV) was demonstrated in the solid state. In solution, a tetrahedral/trigonal bipyramidal configuration around Sn(IV) and a square planar geometry of Pd(II) was indicated by multinuclear NMR (1H and 13C) and UV-visible studies. The Pd(II) derivatives showed interaction with salmon sperm-DNA and caused an inhibition of alkaline phosphatase (ALPs). The antibacterial/antifungal potential of the coordination products varied with the nature of incorporated metal and a substitution pattern at tin(IV); the palladium metallation decreased the antimicrobial activities. The triorganotin(IV) products exhibited more powerful action against bacteria/fungi as compared to their diorganotin(IV) counterparts. The complexes displayed sufficiently lower hemolytic effects in vitro as compared to triton X-100 and slightly higher than PBS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call