Abstract

Sodium aluminophosphate gels and glasses in the system NaPO 3–Al 2O 3 with P/Al ratios ranging from 9:1 to 1:1 have been synthesized by a novel sol–gel route based on the reaction of aluminum lactate with sodium polyphosphate in aqueous solution. The route from the solution to the gel and the final glass was monitored in situ by liquid and solid state NMR techniques, characterizing the influence of composition and pH on the hydrolysis, polymerization, and vitrification processes. The site distribution in the xerogels is strongly influenced by the gel-processing temperature. At temperatures near 150°C ligation with lactate groups can be nearly suppressed, resulting in maximum Al/P connectivity in the gel. Annealing the gels at temperatures near 400°C produces significant structural rearrangements, resulting in a glassy network that has close structural similarity to the glasses derived from the usual melt-cooling procedure at 1100–1450°C. This has been confirmed by extensive 27Al, 31P and 23Na MAS NMR as well as 27Al{ 31P} and 27Al { 1H} double resonance experiments. Compared to melt-cooling, the sol–gel process permits a significant extension of the glass-forming region towards higher alumina contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.