Abstract

The role of NLRP3 inflammasome in innate immunity is newly recognized. The NLRP3 protein is a family of nucleotide-binding and oligomerization domain-like receptors as well as a pyrin domain-containing protein. It has been shown that NLRP3 may contribute to the development and progression of a variety of diseases, such as multiple sclerosis, metabolic disorders, inflammatory bowel disease, and other auto-immune and auto-inflammatory conditions. The use of machine learning methods in pharmaceutical research has been widespread for several decades. An important objective of this study is to apply machine learning approaches for the multinomial classification of NLRP3 inhibitors. However, data imbalances can affect machine learning. Therefore, a synthetic minority oversampling technique (SMOTE) has been developed to increase the sensitivity of classifiers to minority groups. The QSAR modelling was performed using 154 molecules retrieved from the ChEMBL database (version 29). The accuracy of the multiclass classification top six models was found to fall within ranges of 0.99 to 0.86, and log loss ranges of 0.2 to 2.3, respectively. The results showed that the receiver operating characteristic curve (ROC) plot values significantly improved when tuning parameters were adjusted and imbalanced data was handled. Moreover, the results demonstrated that SMOTE offers a significant advantage in handling imbalanced datasets as well as substantial improvements in overall accuracy of machine learning models. The top models were then used to predict data from unseen datasets. In summary, these QSAR classification models exhibited robust statistical results and were interpretable, which strongly supported their use for rapid screening of NLRP3 inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call