Abstract
The immune checkpoints associated with the CTLA-4 and PD-1 pathways are critical modulators of immune activation. These pathways dampen the immune response by providing brakes on activated T cells, thereby ensuring more uniform and controlled immune reactions and avoiding immune hyper-responsiveness and autoimmunity. Cancer cells often exploit these regulatory controls through a variety of immune subversion mechanisms, which facilitate immune escape and tumor survival. Immune checkpoint inhibitors (ICI) effectively block negative regulatory signals, thereby augmenting immune attack and tumor killing. This process is a double-edged sword in which release of regulatory controls is felt to be responsible for both the therapeutic efficacy of ICI therapy and the driver of immune-related adverse events (IrAEs). These adverse immune reactions are common, typically low-grade and may affect virtually every organ system. In the early clinical trials, lung IrAEs were rarely described. However, with ever-expanding clinical applications and more complex ICI-containing regimens, lung events, in particular, pneumonitis, have become increasingly recognized. ICI-related lung injury is clinically distinct from other types of lung toxicity and may lead to death in advanced stage disease. Thus, knowledge regarding the key characteristics and optimal treatment of lung-IrAEs is critical to good outcomes. This review provides an overview of lung-IrAEs, including risk factors and epidemiology, as well as clinical, radiologic, and histopathologic features of ICI-related lung injury. Management principles for ICI-related lung injury, including current consensus on steroid refractory pneumonitis and the use of other immune modulating agents in this setting are also highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.