Abstract

RFID technology is playing an increasingly more important role in the Internet of Things, especially in the dense deployment model. In such networks, in addition to communication, nodes may also need to harvest energy from the environment to operate. In particular, we assume that our network model relies on RFID sensor network consisting of Wireless Identification and Sensing Platform (WISP) devices and RFID exciters. In WISP, the sensors harvest ambient energy from the RFID exciters and use this energy for communication back to the exciter. However, as the number of exciters is typically small, sensors further away from an exciter will need longer charging time to be able to transmit the same amount of information than a closer by sensor. Thus, further away sensors limit the overall throughput of the network. In this paper, we propose to use a multi-modulation scheme, which trades off power for transmission duration. More specifically, in this scheme, sensors closer to the exciter use a higher-order modulation, which requires more power than a lower-order modulation assigned to further away sensors, for the same bit error rate of all the sensors’ transmissions. This reduces the transmission time of the closer sensors, while also reducing the charging time of the further away sensors, overall increasing the total network throughput. The evaluation results show that the RFID sensor network with our multi-modulation scheme has significantly higher throughput as compared with the traditional single-modulation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.