Abstract

In this paper, the application of a linear predictive controller to an industrial distillation column that presents a nonlinear behavior is described. The system is represented by a set of linear approximating models, where each model corresponds to a possible operating point of the system. The control sequence computed by the control algorithm is based on a min–max optimization problem where the controller cost is minimized for the worst process model. The control algorithm makes use of a particular form of the state-space model, which preserves the structure of conventional model predictive control controllers that are based on the step response model. The performance of the proposed controller applied to an industrial system is illustrated with results of the real system at typical plant conditions with the controller performing as a regulator and as an output reference tracker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call