Abstract

The present study assesses the forecast skill of the Madden–Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air–sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air–sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high-resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO–TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in the Indian Ocean with a lead time of 2 weeks. However, the high-resolution GFS atmosphere-only model fails to reproduce the November MJO and the genesis of TC05A at 2 weeks’ lead. This result highlights the necessity to get MJO right in order to ensure skillful extended-range TC forecasting.

Highlights

  • The Madden–Julian Oscillation (MJO) is the dominant mode of tropical convection variability on the intraseasonal timescales (Madden and Julian 1971; Zhang 2005; Lau and Waliser 2011)

  • During the entire DYNAMO/CINDY period, the common problems of operational models on MJO forecasts are: (1) the failure to predict the September primary MJO even with 1 week lead; (2) too slow eastward propagation; (3) the Maritime Continent barrier; (4) the difficulty to predict the MJO initiated by Rossby waves; and (5) the underestimation of the observed intensity

  • The University of Hawaii (UH) model carried out 45-day forecasts during DYNAMO/CINDY period each week initialized with final operational global analysis on 1 9 1-degree produced by National Centers for Environmental Prediction (NCEP), known as FNL, which is almost the same as Global Data Assimilation System (GDAS) analysis but generated 1 h later

Read more

Summary

Introduction

The Madden–Julian Oscillation (MJO) is the dominant mode of tropical convection variability on the intraseasonal timescales (Madden and Julian 1971; Zhang 2005; Lau and Waliser 2011). Along with the gradual warming of the equatorial Pacific, a weak MJO-IV develops, followed by a huge MJO-V with its convective envelope moving slowly from Indian Ocean to western Pacific during the late February and March (Fig. 1). During the entire DYNAMO/CINDY period, the common problems of operational models on MJO forecasts are: (1) the failure to predict the September primary MJO even with 1 week lead; (2) too slow eastward propagation; (3) the Maritime Continent barrier; (4) the difficulty to predict the MJO initiated by Rossby (or mixed-Rossby-gravity) waves; and (5) the underestimation of the observed intensity.

Models and methodology
MJO forecasting skills in three models
Important role of air–sea coupling
November-MJO and Thanksgiving-TC
Discussions
Concluding remarks
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call