Abstract

Iron ore sintering is one of the most energy-consuming process in steel industry. Accurate prediction of carbon efficiency for this process is beneficial to energy savings and consumption reduction. Considering the sintering process exhibits strong nonlinearities, multiple parameters, multiple operating conditions, etc., a multi-model ensemble prediction model based on the actual run data is developed to achieve the high-precision prediction of carbon efficiency. It takes the comprehensive coke ratio (CCR) as a metric (index) of carbon efficiency in the sintering process. First, an affinity propagation clustering algorithm is used to realize the automatic identification of multiple operating conditions. Then, different models are established under different operating conditions by using the proposed least squares support vector machine (LS-SVM) with hybrid kernel modeling method. Finally, a partial least-squares regression method is employed as an ensemble strategy to combine the different models to form the multi-model ensemble prediction model for the CCR. The simulation results involving the actual run data demonstrate that the proposed model can predict the CCR accurately when compared with other prediction methods. The results of actual runs show that the coefficient of determination for the proposed model is 0.877. The proposed model satisfies the requirements of actual sintering process and enables the real-time prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.