Abstract
Tuned mass damper inerter (TMDI) has been proved to be a feasible device for vibration control of long-span bridges due to its excellent space performance. However, existing design method for TMDI is conducted mode-by-mode. When applied to multi-mode control of the bridge through multiple TMDIs, it cannot consider the synergistic effect among the TMDIs and thus leading to a suboptimum design result. This paper presents an efficient method for multi-mode vortex-induced vibration (VIV) control of long-span bridges by using spatially distributed TMDIs (DTMDIs). The governing equations of the bridge-DTMDIs system are established in modal coordinate. A global optimization method considering the synergistic effect among the DTMDIs is proposed and compared with conventional mode-by-mode approach through a numerical case study. The robustness of the control schemes against variations in structural and aerodynamic parameters is investigated. The influence of inerter span length on the control efficiency is also discussed. The results show that the proposed global design method can achieve a better control efficiency with even less TMDIs as compared with conventional mode-by-mode approach. The proposed method can also be extended to VIV control of some other line-like structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.