Abstract

Abstract Mode-division multiplexing (MDM) in silicon-on-insulator platform is an emerging technology to increase the channel number of a single wavelength carrier by the number of modes and consequently increase the transmission capacity of on-chip optical interconnects. We propose and theoretically demonstrate a multimode branching structure based on the truncated Eaton lens. The proposed T-junctions efficiently convert the higher-order modes into fundamental modes; therefore, they can be potentially employed to manipulate modes in MDM systems. The designed T-junctions are implemented by varying the guiding layer’s thickness on a silicon-on-insulator platform. The three-dimensional simulations verify that the proposed structures can split the TE2 (TE1) mode into the fundamental modes with an average transmitted power of 32% (47%) in a 1550–1600 nm bandwidth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call