Abstract

This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

Highlights

  • In scheduling problem, the resource-constrained project scheduling problem (RCPSP) is a classical well-known problem where the activities of a project must be scheduled to minimize its project duration under the presence of precedence and resource constraints

  • Project cost and time are crucial aspects of construction project management and have received significant attention [9, 10]. As another typical focus in project management, project quality needs to be taken into account when solving the multimode resource-constrained multiple project scheduling problem (MRCMPSP). With these issues in mind, this paper focuses on a time/cost/quality trade-off (TCQT) optimization for the MRCMPSP, that is, minimizing the weighted project makespan and project cost and maximizing project quality under the presence of precedence and resource constraints in multiple parallel projects with multimode for each activity

  • The project scheduling problem considered in this paper is from a large scale hydropower construction project in the southwest region of China, in which the main project comprises three parallel projects which have no impact on each other, but each project has many activities with precedence relationships and shared resources. With these issues in mind, this paper focuses on a multimode resource-constrained multiple project scheduling problem (MRCMPSP), which contains mode selection problem and activities scheduling problem for multiple projects

Read more

Summary

Introduction

The resource-constrained project scheduling problem (RCPSP) is a classical well-known problem where the activities of a project must be scheduled to minimize its project duration under the presence of precedence and resource constraints. Within the classical MRCPSP, most research considers project management in terms of a single project, but due to the complexity and natural diversification of a large scale project, there is growing interest in the multimode resource-constrained multiple project scheduling problem (MRCMPSP). Project cost and time are crucial aspects of construction project management and have received significant attention [9, 10] As another typical focus in project management, project quality needs to be taken into account when solving the MRCMPSP. With these issues in mind, this paper focuses on a time/cost/quality trade-off (TCQT) optimization for the MRCMPSP, that is, minimizing the weighted project makespan and project cost and maximizing project quality under the presence of precedence and resource constraints in multiple parallel projects with multimode for each activity

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call