Abstract

We describe a multi-mode, dielectric-lined cylindrical resonator equipped with end reflectors in which wake fields are built up by a sequence of compact drive bunches. The parameters of the resonator are chosen such that the period of the wake fields is the same as the spacing of the drive bunches, and the length of the resonator is taken to be a half-integer multiple of the wake field period. Thus the wake field of a passing charge bunch will travel down the resonator and back so as to arrive at the front reflector just as the next bunch enters. Wake fields remain well defined because, excepting the lowest frequency TM mode, the resonator length is very nearly an integer multiple of the individual mode half-wavelengths. The device thus resembles a mode-locked laser resonator equipped with an “optical switch” (the passing bunches here). By numerical simulation, we find that the wake field amplitudes will increase with additional bunches, and show an example for an experiment to be done at the Yale Beam Physics Laboratory. For the first time we show how wake fields are reflected from boundary surfaces, an effect that should occur in every dielectric wake field apparatus and which we now exploit to advantage. The resonator concept permits a staged accelerator system, and could reduce the severity of beam bunch breakup due to charge asymmetries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call