Abstract

In this paper, a no-core tellurite optical fiber (NCTOF)-based sensor was proposed for cryogenic temperature detection in refrigeration process. The ultraviolet adhesive (UVA) dual-curing method was operated to stablish a sandwich-like composite structure, in which a section of NCTOF was compactly sandwiched between two segments of silica fiber to form multimode interference. The temperature sensing characteristics in cryogenic range were experimentally investigated by monitoring the transmission spectral movement, where a high sensitivity of 105.6 pm/°C was achieved in the range of -20-0 °C and 51.6 pm/°C in the range of -20-25 °C. The excellent performance was consistent with the simulation analysis. The maximum repeatability standard deviation and stability wavelength error of the sensor are 0.9799 pm/°C and 0.1676 nm, respectively. To the best of our knowledge, this is the first report on using tellurite optical fibers for cryogenic temperature detection, and the UVA dual-curing method provides a reliable solution for the integration and practical application of tellurite optical fiber. The proposed sensor is simple in structure, easy in fabrication, low in cost and excellent in performance. It can be expected to be used in food refrigeration, air-conditioning engineering, medical and health, industrial production, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.