Abstract

High-index dielectric nanoantennas, which provide an interplay between electric and magnetic modes, have been widely used as building blocks for a variety of devices and metasurfaces, both in linear and nonlinear regimes. Here, we investigate hybrid metal-semiconductor nanoantennas, consisting of a multimode silicon nanopillar core coated with a gold layer, that offer an enhanced degree of control over the mode selection and confinement, and emission of light on the nanoscale exploiting high-order electric and magnetic resonances. Cathodoluminescence spectra revealed a multitude of resonant modes supported by the nanoantennas due to hybridization of the Mie resonances of the core and the plasmonic resonances of the shell. Eigenmode analysis revealed the modes that exhibit enhanced field localization at the gold interface, together with high confinement within the nanopillar volume. Consequently, this architecture provides a flexible means of engineering nanoscale components with tailored optical modes and field confinement for a plethora of applications, including sensing, hot-electron photodetection and nanophotonics with cylindrical vector beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.