Abstract

Light propagation in multimode fibers is known to experience various nonlinear effects, which are being actively studied. One of the interesting effects is the brightness enhancement at the Raman conversion of the multimode beam in graded index (GRIN) fiber due to beam cleanup at Raman amplification and mode selective feedback in the Raman laser cavity based on fiber Bragg gratings (FBGs) with special transverse structure. It is also possible to explore random distributed feedback based on Rayleigh backscattering on natural refractive index fluctuations in GRIN fibers, but it is rather weak, requiring very high power multimode pumping for random lasing. Here, we report on the first realization of femtosecond pulse-inscribed arrays of weak randomly spaced FBGs in GRIN fibers and study Raman lasing at its direct pumping by highly multimode (M2~34) 940-nm laser diodes. The fabricated 1D–3D FBG arrays are used as a complex output mirror, together with the highly reflective input FBG in 1-km fiber. Above threshold pump power (~100 W), random lasing of the Stokes beam at 976 nm is obtained with output power exceeding 28 W at 174 W pumping. The beam quality parameter varies for different arrays, reaching M2~2 at the linewidth narrowing to 0.1–0.2 nm due to the interference effects, with the best characteristics for the 2D array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call