Abstract

Abstract Medical image fusion increases accuracy of clinical diagnosis and analysis through integrating complementary information of multi-modality medical images. A novel multi-modality medical image fusion algorithm exploiting a moving frame based decomposition framework (MFDF) and the nonsubsampled shearlet transform (NSST) is proposed. The MFDF is applied to decompose source images into texture components and approximation components. Maximum selection fusion rule is employed to fuse texture components aimed at transferring salient gradient information to the fused image. The approximate components are merged using NSST. Finally, a components synthesis process is adopted to produce the fused image. Experimental results verify that the proposed method achieves better performance than other compared state-of-art methods in both visual effects and objective criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.