Abstract

Multimodal intraoperative neuromonitoring (IONM) has been proposed as an effective way to reduce permanent neurologic injury during spinal deformity surgery. However, few studies have reported evoked potential changes at different surgical stages of thoracic posterior vertebral column resection (PVCR). A total of 82 cases with severe thoracic deformity (Yang's A type) treated by PVCR in a single institution between January 2010 and March 2015 were reviewed. Multimodal IONM including somatosensory evoked potential, motor evoked potential, and descending neurogenic evoked potential was performed for real-time assessment of spinal cord function during surgery. The risk factors of neuromonitoring events at different surgical stages were documented and analyzed. Multimodal IONM was successfully performed in all 82 cases. Thirty-nine neuromonitoring events presented in 27 (32.9%) cases. Neurologic monitoring events were more likely to occur in patients with larger scoliosis and kyphosis, longer osteotomy closure distance, more Halo gravity traction, more screw insertion, and higher PVCR segments. The reasons for monitoring changes included 6 events during screw insertion, 20 during osteotomy, 9 during osteotomy gap closure, and 4 during deformity correction. New postoperative neurologic deficits were observed in 11 (13.4%) cases including 1 incomplete paraplegia, 8 transient cord deficits, and 2 nerve root injuries. Multimodal IONM can effectively identify neurologic deficits throughout surgery. Osteotomy and osteotomy gap closure are the surgical stages with the highest neurologic risks during PVCR procedures. It is imperative to improve dexterity since the majority of neuromonitoring events are caused by surgical techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call