Abstract
Accurate estimation of the mechanical property of aging pipes is critical to maintain the safety and to scheduling maintenance. Destructive testing for mechanical properties measurement is very expensive and sometime impossible. Inference methods are needed for estimating the bulk properties by multimodality surface material measurements from nondestructive testing, such as chemical composition, volume fraction and hardness. Bayesian network modeling is utilized to integrate the information from various types of surface measurements for a more accurate bulk mechanical property estimation. To improve the approximation of the actual underlying model and avoid the risk of overfitting, Bayesian model averaging (BMA) of Bayesian networks is implemented to account for Bayesian network model uncertainty. The models considered are weighted based on the posterior model probability. Markov Chain Monte Carlo sampling provides an effective way for numerically computing the marginal likelihoods, which are essential for obtaining the posterior model probabilities. The predictive performance of single best model and BMA are compared by logarithmic scoring rule. The predictive capability of the proposed method is evaluated. It is shown that the Bayesian network and model averaging approach can provide more reliable results in predicting the bulk mechanical properties of the pipelines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annual Conference of the PHM Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.