Abstract
Segmentation of the chest region and breast tissues is essential for surgery planning and navigation. This paper proposes the foundation for preoperative segmentation based on two cascaded architectures of deep neural networks (DNN) based on the state-of-the-art nnU-Net. Additionally, this study introduces a polyvinyl alcohol cryogel (PVA-C) breast phantom based on the segmentation of the DNN automated approach, enabling the experiments of navigation systems for robotic breast surgery. Multi-modality breast MRI datasets of T2W and STIR images were acquired from 10 patients. Segmentation evaluation utilized the Dice Similarity Coefficient (DSC), segmentation accuracy, sensitivity, and specificity. First, a single class labeling was used to segment the breast region. Then it was employed as an input for three-class labeling to segment fat, fibroglandular (FGT) tissues, and tumorous lesions. The first architecture has a 0.95 DSC, while the second has a 0.95, 0.83, and 0.41 for fat, FGT, and tumor classes, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.