Abstract

A multimodal damping strategy is implemented by coupling a beam to its analogue electrical network. This network comes from the direct electromechanical analogy applied to a transverse lattice of point masses that represents the discrete model of a beam. The mechanical and electrical structures are connected together through an array of piezoelectric patches. A discrete and a semi-continuous model are proposed to describe the piezoelectric coupling. Both are based on the transfer matrix formulation and consider a finite number of patches. It is shown that a simple coupling condition gives a network that approximates the modal properties of the beam. A multimodal tuned mass effect is then obtained and a wide-band damping is introduced by choosing a suitable positioning for resistors in the network. The strategy and the models are experimentally validated by coupling a free-free beam to a completely passive network. A multimodal vibration reduction is observed, which proves the efficiency of the control solution and its potential in term of practical implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call