Abstract
Traffic speed is one of the critical indicators reflecting traffic status of roadway networks. The abnormality and sudden changes of traffic speed indicate the occurrence of traffic congestions, accidents, and events. Traffic control and management systems usually take the spatiotemporal variations of traffic speed as the critical evidence to dynamically adjust the traffic signal timing plan, broadcast traffic accidents, and form a management strategy. Meanwhile, transport is multimodal in most cities, including vehicles, pedestrians, and bicyclists. Traffic states of different traffic modes are usually used simultaneously as the significant input of advanced traffic control systems, e.g., multiobjective traffic signal control system, connected vehicles, and autonomous driving. In previous studies, Wi-Fi and Bluetooth passive sensing technology was demonstrated as an effective method for obtaining traffic speed data. However, there are some challenges that greatly affect the accuracy the estimated traffic speed, e.g., traffic mode uncertainty and the errors caused by sensors’ detection range. Thus, this study develops a real-time method for estimating the multimodal traffic speed of road networks covered by Wi-Fi and Bluetooth passive sensors. To address the two identified challenges, an algorithm is developed to correct the biased estimated traffic speed based on the received signal strength indicator of Wi-Fi and Bluetooth signals, and a novel semisupervised Possibilistic Fuzzy <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> -Means clustering algorithm is proposed for identifying traffic modes of Wi-Fi and Bluetooth device owners. The performance of the proposed algorithms is evaluated by comparing with the selected baseline algorithms. The experimental results indicate the superiority of the proposed algorithm. The proposed method of this study can provide accurate and real-time multimodal traffic speed information for supporting traffic control and management, and, thus, improving the operational performance of the whole road network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.