Abstract

The pedagogical modelling of everyday classroom practice is an interesting kind of evidence, both for educational research and teachers' own professional development. This paper explores the usage of wearable sensors and machine learning techniques to automatically extract orchestration graphs (teaching activities and their social plane over time), on a dataset of 12 classroom sessions enacted by two different teachers in different classroom settings. The dataset included mobile eye-tracking as well as audiovisual and accelerometry data from sensors worn by the teacher. We evaluated both time-independent and time-aware models, achieving median F1 scores of about 0.7-0.8 on leave-one-session-out k-fold cross-validation. Although these results show the feasibility of this approach, they also highlight the need for larger datasets, recorded in a wider variety of classroom settings, to provide automated tagging of classroom practice that can be used in everyday practice across multiple teachers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.