Abstract

Sports data analysis has significantly advanced and become an indispensable technology for planning strategy and enhancing competitiveness. In soccer, shot prediction has been realized on the basis of historical match situations, and its results contribute to the evaluation of plays and team tactics. However, traditional event prediction methods required tracking data acquired with expensive instrumentation and event stream data annotated by experts, and the benefits were limited to only some professional athletes. To tackle this problem, we propose a novel shot prediction method using soccer videos. Our method constructs a graph considering player relationships with audio and visual features as graph nodes. Specifically, by introducing players’ importance into the graph edge based on their field positions and team information, our method enables the utilization of knowledge that reflects the detailed match situation. Next, we extract latent features considering spatial–temporal interactions from the graph and predict event occurrences with uncertainty based on the probabilistic deep learning method. In comparison with several baseline methods and ablation studies using professional soccer match data, our method was confirmed to be effective as it demonstrated the highest average precision of 0.948, surpassing other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.