Abstract
The identification of cancer cells in the lymph nodes surrounding a tumor is important in establishing a prognosis. Optical detection techniques such as fluorescence and photoacoustic tomography (PAT) have been reported in preclinical studies for noninvasive sentinel lymph node (SLN) mapping. A method for validation of these techniques is needed for clinical trials. We report the use of a multimodal optical-radionuclear contrast agent as a validation tool for PAT in a preclinical model. Methylene blue (MB) was radiolabeled with (125)I for multimodal SLN mapping and used in conjunction with MB to assess the feasibility of multimodal SLN mapping in a rat model by PAT and single-photon emission computed tomography (SPECT). MB provided sufficient contrast for identifying SLNs noninvasively with a PAT system adapted from a clinical ultrasound imaging system. The signal location was corroborated by SPECT using (125)I labeled MB. The translation of PAT into the clinic can be facilitated by a direct comparison with established imaging methods using a clinically relevant dual SPECT and photoacoustic imaging agent. The new high-resolution PAT is a promising technology for the sensitive and accurate SLN detection in cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.