Abstract
With the popularity of smartphones, we have witnessed the rapid proliferation of multimodal posts on various social media platforms. We observe that the multimodal sentiment expression has specific global characteristics, such as the interdependencies of objects or scenes within the image. However, most previous studies only considered the representation of a single image-text post and failed to capture the global co-occurrence characteristics of the dataset. In this paper, we propose Multi-channel Graph Neural Networks with Sentiment-awareness (MGNNS) for image-text sentiment detection. Specifically, we first encode different modalities to capture hidden representations. Then, we introduce multi-channel graph neural networks to learn multimodal representations based on the global characteristics of the dataset. Finally, we implement multimodal in-depth fusion with the multi-head attention mechanism to predict the sentiment of image-text pairs. Extensive experiments conducted on three publicly available datasets demonstrate the effectiveness of our approach for multimodal sentiment detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.