Abstract

In the real world, multimodal sentiment analysis (MSA) enables the capture and analysis of sentiments by fusing multimodal information, thereby enhancing the understanding of real-world environments. The key challenges lie in handling the noise in the acquired data and achieving effective multimodal fusion. When processing the noise in data, existing methods utilize the combination of multimodal features to mitigate errors in sentiment word recognition caused by the performance limitations of automatic speech recognition (ASR) models. However, there still remains the problem of how to more efficiently utilize and combine different modalities to address the data noise. In multimodal fusion, most existing fusion methods have limited adaptability to the feature differences between modalities, making it difficult to capture the potential complex nonlinear interactions that may exist between modalities. To overcome the aforementioned issues, this paper proposes a new framework named multimodal-word-refinement and cross-modal-hierarchy (MWRCMH) fusion. Specifically, we utilized a multimodal word correction module to reduce sentiment word recognition errors caused by ASR. During multimodal fusion, we designed a cross-modal hierarchical fusion module that employed cross-modal attention mechanisms to fuse features between pairs of modalities, resulting in fused bimodal-feature information. Then, the obtained bimodal information and the unimodal information were fused through the nonlinear layer to obtain the final multimodal sentiment feature information. Experimental results on the MOSI-SpeechBrain, MOSI-IBM, and MOSI-iFlytek datasets demonstrated that the proposed approach outperformed other comparative methods, achieving Has0-F1 scores of 76.43%, 80.15%, and 81.93%, respectively. Our approach exhibited better performance, as compared to multiple baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.