Abstract

Semantic 3D mapping is one of the most important fields in robotics, and has been used in many applications, such as robot navigation, surveillance, and virtual reality. In general, semantic 3D mapping is mainly composed of 3D reconstruction and semantic segmentation. As these technologies evolve, there has been great progress in semantic 3D mapping in recent years. Furthermore, the number of robotic applications requiring semantic information in 3D mapping to perform high-level tasks has increased, and many studies on semantic 3D mapping have been published. Existing methods use a camera for both 3D reconstruction and semantic segmentation. However, this is not suitable for large-scale environments and has the disadvantage of high computational complexity. To address this problem, we propose a multimodal sensor-based semantic 3D mapping system using a 3D Lidar combined with a camera. In this study, the odometry is obtained by high-precision global positioning system (GPS) and inertial measurement unit (IMU), and it is estimated by iterative closest point (ICP) when a GPS signal is weak. Then, we use the latest 2D convolutional neural network (CNN) for semantic segmentation. To build a semantic 3D map, we integrate the 3D map with semantic information by using coordinate transformation and Bayes’ update scheme. In order to improve the semantic 3D map, we propose a 3D refinement process to correct wrongly segmented voxels and remove traces of moving vehicles in the 3D map. Through experiments on challenging sequences, we demonstrate that our method outperforms state-of-the-art methods in terms of accuracy and intersection over union (IoU). Thus, our method can be used for various applications that require semantic information in 3D map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.